Thursday, February 9, 2012

Will bubble-powered microrockets zoom through the human stomach?

Will bubble-powered microrockets zoom through the human stomach? [ Back to EurekAlert! ] Public release date: 8-Feb-2012
[ | E-mail | Share Share ]

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society

Scientists have developed a new kind of tiny motor which they term a "microrocket" that can propel itself through acidic environments, such as the human stomach, without any external energy source, opening the way to a variety of medical and industrial applications. Their report in the Journal of the American Chemical Society describes the microrockets traveling at virtual warp speed for such devices. A human moving at the same speed would have to run at a clip of 400 miles per hour.

Joseph Wang and colleagues explain that self-propelled nano- or microscale motors could have applications in targeted drug delivery or imaging in humans or as a way to monitor industrial applications, such as semiconductor processing. However, some versions of these small-scale motors are not self-propelled and require the addition of a fuel (commonly hydrogen peroxide). Other versions cannot withstand extreme environments such as the stomach, which is very acidic. That's why the researchers developed a new, tubular microrocket that can move itself without added fuels in very acidic conditions.

They tested the new microrocket in various acids and in acidified human blood serum. In such environments, a microrocket spontaneously produces bubbles of hydrogen gas, which propels it like the gases spewing out of a rocket's motor nozzle. The microrocket is ultrafast it can move farther than 100 times its 0.0004-inch length in just one second. In contrast to current devices of this kind, the microrocket's interior is lined with zinc, which is more biocompatible and "greener" than other materials and leads to the generation of the hydrogen bubbles. Wang's team also developed a version with a magnetic layer, which enabled them to guide the microrockets toward cargo for pick-up, transport and release.

###

The researchers acknowledge funding from the National Science Foundation and the Fulbright Scholarship Program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact newsroom@acs.org.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Will bubble-powered microrockets zoom through the human stomach? [ Back to EurekAlert! ] Public release date: 8-Feb-2012
[ | E-mail | Share Share ]

Contact: Michael Bernstein
m_bernstein@acs.org
202-872-6042
American Chemical Society

Scientists have developed a new kind of tiny motor which they term a "microrocket" that can propel itself through acidic environments, such as the human stomach, without any external energy source, opening the way to a variety of medical and industrial applications. Their report in the Journal of the American Chemical Society describes the microrockets traveling at virtual warp speed for such devices. A human moving at the same speed would have to run at a clip of 400 miles per hour.

Joseph Wang and colleagues explain that self-propelled nano- or microscale motors could have applications in targeted drug delivery or imaging in humans or as a way to monitor industrial applications, such as semiconductor processing. However, some versions of these small-scale motors are not self-propelled and require the addition of a fuel (commonly hydrogen peroxide). Other versions cannot withstand extreme environments such as the stomach, which is very acidic. That's why the researchers developed a new, tubular microrocket that can move itself without added fuels in very acidic conditions.

They tested the new microrocket in various acids and in acidified human blood serum. In such environments, a microrocket spontaneously produces bubbles of hydrogen gas, which propels it like the gases spewing out of a rocket's motor nozzle. The microrocket is ultrafast it can move farther than 100 times its 0.0004-inch length in just one second. In contrast to current devices of this kind, the microrocket's interior is lined with zinc, which is more biocompatible and "greener" than other materials and leads to the generation of the hydrogen bubbles. Wang's team also developed a version with a magnetic layer, which enabled them to guide the microrockets toward cargo for pick-up, transport and release.

###

The researchers acknowledge funding from the National Science Foundation and the Fulbright Scholarship Program.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society contact newsroom@acs.org.


[ Back to EurekAlert! ] [ | E-mail | Share Share ]

?


AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.


Source: http://www.eurekalert.org/pub_releases/2012-02/acs-wbm020812.php

josh krajcik porphyria the civil wars cinnamon rolls krampus robert de niro winner of x factor

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.